南开大学数学科学学院

泛函分析2024-2025期末测试卷

注意事项:

1. 命题人: 李磊

2. 回忆人: xzqbear

3. 考试限时: 100 分钟

4. 本次考试全英文命题.

5. 考试时间: 2024年12月31日

一、解答题

1. (15分)

Let S be any non-empty set and E be a Banach space over \mathbb{R} . Let $C^b(S, E)$ be the vector space of bounded continuous functions from S to E with the norm

$$||f||_b = \sup_{s \in S} ||f(s)||$$

. Show that $C^b(S,E)$ is a Banach space.

2. (15分)

Let $M_n(\mathbb{R})$ be the space of all $\mathbb{R}^{n\times n}$ matrix. Define $\langle A,B\rangle=\operatorname{tr}(A^{\mathrm{T}}B)$. Prove $\langle\cdot,\cdot\rangle$ is an inner product on $M_n(\mathbb{R})$.

3. (15分)

Let $1\leqslant p<\infty$ and consider $T:\ell_p\to L^p[0,\infty)$ defined by

$$T(x) = \sum_{n=1}^{\infty} x_n \chi_{[n-1,n)}, \forall x \in (x_n)_{n \in \mathbb{N}} \in \ell^p.$$

Prove that ||Tx|| = ||x|| for any $x \in \ell^p$.

4. (15分)

Let $\varphi:[0,1]\to\mathbb{R}$ be a continuous function and $T:L^2[a,b]\to L^2[0,1]$ defined by

$$Tf(x) = \varphi(x) \int_0^1 \varphi(t)f(t)dt$$

Prove that T is self-adjoint and positive.

5. (15分)

Consider Ω as a σ -finite measure space, and $y \in L^{\infty}(\Omega)$. Define T as a linear operator:

$$Tx(t) = y(t)x(t)$$

 $x \in L^2(\Omega)$ and $t \in \Omega$ are arbitrary. Find adjoint operator T^* .

6. (15分)

Suppose H is a Hilbert space, prove that linear operator T on H is self-adjoint if and only if $\langle Tx, x \rangle \in \mathbb{R}$.

7. (10分)

Let X be a normed space, and $(x_n)_{n\in\mathbb{N}}\subseteq X$ with the property that

$$\sum_{n=1}^{\infty}|x^*(x_n)|<\infty, \quad \forall \ x^*\in X^*.$$

Prove that

$$\sup_{\|x^*\|\leqslant 1}\sum_{n=1}^\infty |x^*(x_n)|<\infty.$$