数学学院本科生 2023-2024 学年第二学期几何学(全英文)期 末考试试卷

授课老师:徐彬斌

Instructions:

(涉及的距离都是欧氏距离)

(写在其它位置要标明题号)

$$\underline{e}_i = (0, \cdots, 0, \underbrace{1}_i, 0, \cdots, 0) \in \mathbb{R}^n.$$

1, Let G be the dihedral group of some regular polygon P in \mathbb{R}^2 , and $m \in \mathbb{N}^*$ be the number of elements in G.

- (a) Compute the number of sides of P.
- (b) Compute the interior angle of P.
- 2, Let

$$\underline{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \underline{x}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad \underline{x}_3 = \begin{bmatrix} -3 \\ 2 \end{bmatrix}.$$

- (a) Give two isometries of \mathbb{R}^2 sending \underline{x}_1 to \underline{x}_2 .
- (b) Is there an isometry sending \underline{x}_1 to \underline{x}_2 and \underline{x}_2 to \underline{x}_3 at the same time?
- (c)Compute the orthogonal projection of \underline{x}_3 to the line $L(\underline{x}_1,\underline{x}_2)$ passing through \underline{x}_1 and \underline{x}_2 .
- 3, Consider the map

$$f: \{1, 2, \cdots, 8\} \rightarrow \{1, 2, \cdots, 8\}$$

defined by

x	1	2	3	4	5	6	7	8
f(x)	2	3	4	1	8	6	5	7

Let G be the group generated by f. Consider the G-action on $\{1, 2, \dots, 8\}$.

- (a) Compute the number of G-orbits in $\{1, 2, \dots, 8\}$.
- (b) How many elements of $\{1, 2, \dots, 8\}$ in each G-orbit?
- (c)Compute Stab(4).

4, Let f and g be two affine transformations of \mathbb{R}^3 . We would like to use the following method to see if f = g:

- (1) Choose finitely many points $\underline{x}_1, \dots, \underline{x}_k \in \mathbb{R}^3$.
- $(2) \text{Check if } f(\underline{x}_1) = g(\underline{x}_1), f(\underline{x}_2) = g(\underline{x}_2), \cdots \text{and} f(\underline{x}_k) = g(\underline{x}_k). \text{ If yes, then } f = g; \text{ if no, then } f \neq g.$

In order to make this method work, at least how many points do we need? What is the minimal possible value of k?

- 5, Consider the group Aff \mathbb{R}^3 and its action on lines in \mathbb{R}^3 .
- (a)Compute Stab $(L(\underline{0}, \underline{e}_1))$.
- (b)Compute $\operatorname{Stab}(L(\underline{0},\underline{e}_1)) \cap \operatorname{Stab}(L(\underline{0},\underline{e}_2))$.
- 6, Consider lines in \mathbb{R}^2 passing the origin. Take the affine chart

$$\mathbb{A} = \left\{ \begin{bmatrix} 1 \\ x_2 \end{bmatrix} \middle| x_2 \in \mathbb{R} \right\},\,$$

and call the corresponding x_2 of a line passing the origin its affine coordinate.

Denote by L_1, L_2, L_3, L_4 the lines with coordinates 1, 2, 3, 4 respectively, and L'_1, L'_2, L'_3, L'_4 the lines with coordinates -1, -3, -2, -4 respectively.

- (a) Is there a projective transformation sending (L_1, L_2, L_3, L_4) to (L'_1, L'_2, L'_3, L'_4) ? If yes, how many such projective transformations are there?
- (b) Is there a projective transformation sending $\{L_1, L_2, L_3, L_4\}$ to $\{L'_1, L'_2, L'_3, L'_4\}$? If yes, how many such projective transformations are there?

(回忆者的注: "sending (L_1, L_2, L_3, L_4) to (L'_1, L'_2, L'_3, L'_4) " 表示把 L_1 送到 L'_1 , L_2 送到 L'_2 , L_3 送到 L'_3 , L_4 送到 L'_4 , 顺序要对应; 而 "sending $\{L_1, L_2, L_3, L_4\}$ to $\{L'_1, L'_2, L'_3, L'_4\}$ " 表示把集合 $\{L_1, L_2, L_3, L_4\}$ 送到集合 $\{L'_1, L'_2, L'_3, L'_4\}$, L_1 不一定要去 L'_1 ,也可以去 L'_2, L'_3 或 L'_4 . 考试时老师简单解释了这两个符号的区别.)

7, Pascal's theorem: consider the following hexagon inscribed in a circle. Denote by a, \dots, f its vertices, and let

$$p = L(a,b) \cap L(d,e),$$

$$q = L(b,c) \cap L(e,f),$$

$$r = L(c,d) \cap L(f,a).$$

Pascal's theorem tells us that p, q, r are collinear.

- (a) Mark the vertices a, \dots, f and the intersections p, q, r in the picture.
- (b)Draw a new picture to show the dual theorem to Pascal's theorem. What does the dual theorem tell us about?
- (回忆者的注: 1. 我忘了卷子有没有给出 Pascal 定理的结论; 2. 卷子上的图我没画,大概参考下面这个吧.)

