专业:

年级:

学号:

姓名:

成绩:

得 分

、一 、 (本题共 10 分,每小题 5 分)

- a) Give the definitions of strictly stationary (强平稳) time series and weakly stationary (弱平稳) time series. Why the stationary condition is important?
- b) Give the definition of an integrated autoregressive moving average model (ARIMA). What are the sufficient and necessary conditions for an ARIMA model to be causal and invertible?

草 稿 区

草 稿 区

得 分

二、 (本题共 20 分,每小题 5 分)

Consider the random walk with drift model, $x_t = \delta + x_{t-1} + w_t$, t = 1,2,..., with $x_0 = 0$, where w_t is white noise with mean zero and constant variance σ_w^2 .

- a) Show that the model can be written as $\,x_t=t\delta+\sum_{i=1}^tw_i\,$;
- b) What are the mean function and auto-covariance function of x_t ? Is x_t stationary?;
- c) Show the auto-correlation function $\rho_x(t-1,t) = \sqrt{\frac{t-1}{t}} \rightarrow 1$, as $t \rightarrow \infty$.
- d) Suggest a transform to make x_t stationary.

得 分

、三 、(本题共 20 分,每小题 10 分)

Suppose x_t follows an ARMA(1,1) model with zero mean, $x_t = \phi x_{t-1} + \theta w_{t-1} + w_t$

- a) Obtain the auto-covariance function and auto-correlation function of $\,x_t\,$;
- b) What is the stationary solution of the (causal) ARMA(1,1) model? Obtain the coefficients for w_{t-k} , k=0,1,2,... in the stationary solution.

草 稿 区

得 分

、四 、(本题共 20 分,每小题 10 分)

- a) Describe the steps for fitting an appropriate ARIMA model to a time series;
- b) For a general stationary time series x_t with mean zero, derive the prediction equations for obtaining the best (minimum-mean-squared-error) linear predictor of x_{n+m} based on n observations, $\{x_1, x_2, \dots, x_n\}$.

草 稿 区

得 分

、五、 (本题共 20 分,每小题 10 分)

Consider an AR(1) model, $x_t - \mu = \phi(x_{t-1} - \mu) + w_t$, where μ is a constant mean and w_t is Gaussian white noise with mean zero and variance σ_w^2 . Suppose we observe x_1, x_2, \ldots, x_n from the x_t series.

- a) Show the Yule-Walker equations for estimating ϕ and σ_w^2 . Obtain the corresponding estimate (矩估计) for ϕ based on n observations;
- b) Show the (Gaussian) conditional log-likelihood function (条件对数似然函数) given x_1 for parameter estimation. Obtain the estimate of ϕ based on the conditional log-likelihood function.

得 分

、六、 (本题共 10 分,每小题 5 分)

Given data $x_1, x_2, ..., x_n$ with a constant mean μ , define the discrete Fourier transform for a given frequency ω_j : $d(\omega_j) = n^{-1/2} \sum_{t=1}^n x_t e^{-2\pi i \omega_j t}$, where $i = \sqrt{-1}$, $\omega_j = \frac{j}{n}$, and j = 0, 1, 2, ..., n-1.

- a) What is the definition of periodogram, $I(\omega_i)$? How to interpret it?
- b) Show that for $j \neq 0$,

$$I(\omega_j) = \sum_{h=-(n-1)}^{n-1} \hat{\gamma}(h) \exp(-2\pi i \omega_j h)$$

where $\hat{\gamma}(h)$ is the sample auto-covariance function. What is the implication of b) for explaining the periodogram $I(\omega_i)$?

草 稿 区